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Abstract

e £ gt e

A class of simple problem solving tasks requiring fast accurate

solutions is introduced. In an experiment subjects memofised a mapping rule

represented by lists of words labelled by cue words and made true/false
decisions about.conjunctions of propositions of the form, "Y is in the list
labelled by X," written "¥—%—Y". Response times are analysed’ using a

"stage modeling" technique where problem solving algorithms are composed
using a small set of psychological Voperations that havé real time
characteriétics specified parametrically. The theoretical analysis shows
that response time performance is adequately described in terms of the
sequential application of elementary psychological operations, .Unexpectedly
it was found that the proposition "K~—>—Y¥ and X—3—Z" was verified as
quickly as the appavently simpler "X-J%;¥". A case 13 presented for the
modeling technique as appllied to memory and problem solving tasks in terms
of theoretical parsimony, statistical simplicity, and Fflexibility in
investigative empiricai research;- Suggestions are made .as to possible

theoretical relations among fast problem soiving, more complex and slower

problem solving, and research in fundamental memory processes.







-Introduction
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The dominant theoreticél approach to the analysis of problem solving
has been to construct a forqal model, often in the form of a computer
program, that simulates some qualitative aspects of human problem solving
performance such -as the protocol sequences observed in deriving logic
theorems {(Newell & Simon, 1972). In these analyses emphasis is placed on
the integratioﬁ of elementary information operations into a problem solving
algorithm while 1less attention is given to the elementary operatlons
themselves. An approach that has been relatively less well explored is to
specify the processing time implications of proposed algorithms and to
determine whether observed human response times (RT's) are consistent with
thg predicted pattern. From a statistical point of view, problems that
require several minutes te solve or involve extensive "searching for a
solutiﬁn (e.g., looking for the best move in a chess position, de Groot,
1965) might be expected to have large RT variances even for an individual
subject such that it becomes impréctical to wmodel thé fine details of RT.

However, for simple problems where human subjects are easily able to respond




-éorrectiy in a2 matter of a few seconds, it should be possible to verify the
processing_time predictions of specific problem solving algorithms.

One method for deriving RT predictions is to .describe ﬁrobIEm
solving algorithms in terms of the sequential application of a”éet of basic
psychological operations (procedures, subroutines, or ‘“stages") each of
which requlres real processing time and has some probability of producing an
" error. Leaving the details for later discussion, the theoretical RT for an
algbrithm‘appiied to.a particular problem cén be described as the sum.of the
. processing times - of the operations applied and the error rate is roughly

.

1 minus the product of the correct probabilities of these operatioms. An
alternative technique for making RT predictions is to assign computational
complexity measures to the basic operations and to derive the cqmpléxity of
an algorithm as the sum of the complexities of its component opergtions;
linearly related to
computational complexity 1is then directly interpreted as/ theoretical mean
RT, This complexity assignment method yields the same description of mean
RT's as does the corresponding stage model although it does not.deécribe
higher RT wmoments. Note that both methods are easily generalized

to take account of the possibility of mixed (randomized) strategies for

applying available algorithms,

On a general theoretical level, the RT analysis of fast accurate
problem solving can be a valuable source of evidence in deciding on a set of
basic psychological operatioﬁs used ipn human problem solving. The case is
similar to that for chronométric studies of linguistic compreﬁension (Chase
& Clark, 1972)_ where alternative representations of prqposi;ibns can

sometimes be discriminated by éqnstructing RT models - for processing




propositions to make true/false decisions. For problem sqlvingwftheories it
is desirable to build algorithms working wifh a set of elementary‘operatioﬁs
which. have. some preferred characteristics, such as  corresponding to
procedures or subroutines that can be convenlently written as logical units
when programming in a particular languagé, or being genefal In the sense
that the same set of operations can be used In solving several types of
problems. Another preferred characte?istic is that the set of operatioms
has "psychological validity" insofar as real time processing aspects of the

operations can be defined and verified in observed RT performance.




Algebra étep probléms

To pursue these ideas in experimental task was sought whefe subjects
would learn a set of rules (e.g., Fhe mo§es of pleces in a board game, or a
mapping of.  ome set of objects iato _another) and be required to solve
érue[false problems by repeated application of these rules. It waé thought
that .a model for the. single application of_é rule could then be extended to
a model for the entire problem solving task by specifyiqg the way rules were
applied to solve a problem.

Consider a small finite set X and a rule that assigns to each
element of X a subset of X. Such a rule can be written in the form of a

transition table such as that in Figure 1 which was used in an experiment to

be described later.

Figure 1 about here

A memorised .transition table, say where X is a set of consonant-vowel-
consonant (CVC) words, might be represenfed as "lists" in some memory store
with "addresses" corresponding to the elements of X. One of the most basic
propositions that can be made about a particular transition table is that x; -
is mapped into a 1list that contains x; , written x——x; as a mapping
diagram, where =x, and x; are variables standing for elements of X: this
propbsition is either true or false. A subject who has memorised a
transition table can be ﬁreéented with the proposition xf—y—xj and be
required to make a true/false decision using his knowledge of the  rule as

defined by the table. In the experiment to be described, subjects were




Figure 1 =~ ASP Transition Table
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. presented with logical “and” conjunctions of these simple propositions and
RT's for a true/false decislon were measured. The propositional forms or
problem tyﬁes used are listed in Figure 2 in three groups (A, B and C)

according to the geometric shapes of the mapping diagrams.

Flgure 2.about here

A problem is true if and omly if a1l the'propositions represented by the
arrows or links are true; iIf just one 1link is false ‘then the problen 1s
false. For example, P(-—-) in figure 2 is true only I1f X—x and
X=X, and x,—»-x, ; it 1is false 1f any one of these propositions is
- false. Similarly P(—<) is true only if  X—>—x, and X——x, and
#J+x£; and P(>-) only if X—r—x, and Xp->—x, and X5-Xg.

In the experiment subjects memorised transition tables of the form
fepresented in Figure 1 where the elements of X were CVC words, and were
tested with problems of the sort illustrated in Figure 2, Representing a
transition table in memory as stored 1is£s, an individual 1ink, XX,
could be verified true or false by using the cue Xx; to access" the
appropriate -list in memory and then "scanning" the probe x, against this
‘1list for a "match™; if a match is obtalned then the link is true and
otherwise.'false.‘ A model for the verificatioﬁ of the conjunctive
propositions could then be obtained on the assumption that verification
proceeds 6ne link at a time in some‘specified order. These notions are
developed in the discussion section below., Since it is possible to verify
mapping diagrams by checking each link in a step by step manner, the test
items used in this task are referred to as algebfa step problems (ASP).

- for each problem type _
ASP items /were selected from a computer generated listing of all

Wh




Figure 2 - ASP Problem Types

problem type

mapping diagram
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- possible items given the transition table (Figure 1) such that within each-
problem type there were an equal number of true and false items. ' For false
problems exactly one Ilink was false, and for each type the false 1link
occurred with equal frequency at each link position. In addition an effort
ﬁas made to match the frequencies of occurrence of‘CVC words between true
and false items within each problem fype so as to avold a possible source of
response bias. The total pool of about 400 distinct items was divided into
four blocks; the same P(-) items occuring in each block but otherwise there
was no overlap.l Denoting blocks by B,, B,, By, B,, subjects were tested
over six_sess;ons with one block per day in the order B B,B,B B B,, where
blocks and trials within blocks were randomised for each rsuﬁject
individually. A set of nine CVC words was randomly assigned to the abstract
transition table scheme for each subject: no two subjects had identical

_transition tables although all tables had the same formal structure.

The experiment was run using an Imlac Corporation PDS-~1 cathode ray
tube (CRT) display and keyboard, interfaced with a PDP-10 computer. 8§ix
female subjects ran for seven sessions; the first session was devoted to a
transition table learning drill (subjects did not memorise their transition
tables prior to the first session), and the remaining six sessions were used

.for ASP test items. On a single trial of the drill a cue word was presented
on the CRT and the subject was required to type the appropriate list in
serial order (since the CVC Wordg used had unique initial consonants, fhe
subject ﬁyped only the first letter of each word and tﬁe computer completed
the words with suitable hdrizoﬁfal spacing). On completing her response to
a cue the subject pressed the keyboard spacebar and the éorrect list was
printed horizontally directly benéathxthe typed response, providing feedback

and an opportunity for study. :Permutations of the nine cue words were run




and fpllowing each permutation  the subject was told her percentage of .
correct tresponses and the time taken to respond to all the cues. Subjects
were required to participate in the drill mtil they could cqnsistentiy
achieve perfect accuracy.with a fésponse time under 25 seconds; all subjects
met this criterion within 30 to 50 minutes of the drill.

In the ﬁrﬁblem éessionS'ASP'items.were dispiayed at the center of
the CRT and subjects'respondéd true/false using two keys on the lower row of
the kéyboard. The subjeét initiated trials. by pressing the spacebar
foliowing a readﬁ signain Items ﬁere' preceded by a 1 second duratioﬁ
fixation cross aﬁd appeared just to'the right of the cross, remaining on the
screen until the subject responded. Immediately after responding subﬁects
received a feedback message ihdicating correct/error and fesponée time.

Before the first problem session subjects‘were shown examples of the
seven problem types and told to respond "true™ if and only 1f all the links
in an item were true and to respond '"false" as soon as they knew that one
link was false. Subjects were informed that there were an equal number of
true and false items ﬁithiﬁ each problem type on each.day and that false
items had exactly one link which was equally likely to occur in any
posiﬁion. ‘On the first day of problems subjects were instructed to be
completely accurate for the initial thirty or fdrty trials and then to
Increase their speed as they got a feeiing for the task. For subsequent
testing sessions subjects were imstructed to respond as quickly they could
without making more than about'one':error in twenty trials on average.
Subjects were explicitly = imstructed never to guess and never to "think

twlce" about their response once they had made a decision.




Experimental Results

To eliminate early practice effects and to facilitate .the
obgervation of -stable task strategies the data for .each subject from the
first of the six testing sessions was discarded together with the first ten
trials of the remaining five sessions, yielding on thg order of 550 trials
per subjeétﬂ Only ;orrect‘ RT's excluding outliers were analysed. ;Correct
RT histograms were plotted separately for each problem type, for both true
and false responses, and for each subject to identify possible outliers.
Response times falling more than 1 second:above the main distribution as
determined by the mode and the contiguous tails were eliminated; such

outliers constituted about 2% of the correct RT data.

Table 1 about here

Due to the complex description of the ASP iteﬁs it is not possible
to represent all aspects of the data simultaneously in a single graph or
table. However, by collapsing across various subsets of the data we can
obtain a reasonable picture of major effects which can then direct more
detailgd modeling and statistical evaluation. Since plots of the aata for
individual subjects showed subjects to be qualitatively comparable, the R?
data for all six gubjects was pooled to simplify the presentation of
resulté, Table 1 presents RT and error rate data classified-by problem type
and position of the false link (if any). The notation P(-—-) TIF
indicates that the third link from the left was false; P(>-) FIT that the

 upper link qf the branch (>) was false; P(-<) TTF that the lower link of




Table 1 -~ Group RT Means and Errors

‘type

P(-)
P(-)
P(--)
P(--)
P(--)
P(-—)
P(---)
P(-—)
P (~—)
.P(<)
P(<)
P(<)
P(-<)
P(=<)
P (<)
P (<)
CP(>)
P(>)
P(>)
P(>-)
P(>)
P(>-)

P(>-)

(by problem type and position of false link)

false

link

TT

FT

F -

TTT

FTT

TFT

TTF

TIT .

FIT

TFT

TTF

TT

FT

TF

TTT

FIT

TFT

TTF

-obs
mean
(msec)

1576

2041

2468

2101

3161

3631
2137
3374
4184
1580
2287
2152
2592
1950
2972
2864
2575
2501
3002
3657

2622

3342

4002

th

mean
{(msec)"

1529
1993
2541
1842
3187
3584
1871
3086
4046
1567
2068
2014
2534
1825
3001
3000
2610
2211
2876
3539
2406
2990

4153

8sa

ots
s.4d.
(msec)
590
741
305
862
1035
1103
949
1252
1106
532
815
964
933
994
895
858
752
835
735
1045
1146
1169

1060

error

Z

5.6
5.3
2.3
7.8
3.8
4.3
7.5
6.7
10.5
4.5
8.3
3.0
4.3
10.2
5.9
6.8
5.1
5.0
3.1
3.7
4.2
6.7

1.7

total
N

1245
243
251
117
121
388
121
125
121
161
75
88
328
112
108
112
121
. 63
61
237
78
79

73




the branch (<) was false. Observed means and variances and theoretical
means (derived from a statistical model introduced below) are averages
across subjects weighted by the numbers of correct RT's observed.

Figure 3 about here

Figures 3 and 4 are based. on the data of Table 1; curves ﬁépresent
theoretical mean RT. Figure 3 plots true and false mean RT by problem
types. A striking feature about these data are the fdllowing-a?proximate

equalities of mean RT's obtaining among the problem types;

P(<) = P(=) and P(=<) = P(—)

B(——-)

"~ P(>) = P(—) and P(>-)

0f course these .equalities hold among averages - including quite distinct
items within each problem type, but th;y do suégest that the time to verify
a left branch configuration (<) is not.substanf1511y diffefent from the time
fcrr a simple link (—); In contrast, verifying two links in the ()
configuration appears to take the same time as two links in the (uf)
configuration. In what follows the (<)} configuration will be referred to as

‘a double probe link and (-) as a single probe link.

Within each of the problem groups RT incréasés with the number of
links, If a sequential processing of links is assumed_then the slopes of
the true curves directly reflect the average time taken to verify that Q
link is true. Nﬁtg that the three true curves' plottgd in Figure 3 have
approximaéely the same slopes, which togetﬁer‘with the equalities remarked
above is cpnsiétent witb' é sequential processing account. A way to

- investigate order in sequential processing is to examine false RT's for each
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Pl==). Pl===) Pl{<) Pi(=<)  P{>) Pi{>)
' Problem Type

Flg’ure 3 - Mean correct RT's plotted by problem type and true/false.
(Points are data and curveg are theoretical.)




problem type in a group as a function of the position of the false link
assuming that subjects responded "false" as soon as they discovered a false

1ink, ¥Figure 4 illustrates graphically this order of processing analysis.

Figure 4 about here

Figure 4a shows that for group A problems RT increases as the false 1ink is
moved froﬁ the first to the third position with a slope about the same as
“the true slopes in Figure 3: this indicatés a striet ieft/right processing
‘order. Figure 4b shows that for P(—<) the tail 1link (-) is almost alwéys
 verified before the left branch (<), while within the branch there 1is no
strong up/down processing order., This is interpreted as consistent with the
proposal that the double probe link is.verified in one step (i.e., not as
éeparate simple 1links) which dImpliies that there should be no up]down
" processing order as such. Figure 4c presents a more complicated story for
group C. While link processing for this group tends to be up/down on the
‘ right branch {>) and branch (>) before tail (-) (i.e.; left/right) in P(>-)
| this order cannot be strict since the RT slopes as the false link
position mﬁVes are noticeably less than the true slopes in Fipure 3, A

probabilistic order of processing is appropriate for group C problems.

Figure 5 about here

The verification of a-link is in some respects similar to memory
scanning tasks (Sternberg, 1969a) that require subjects to decide whether a
probe symbol is contained in a memorised 'set of symboels. For an ASP

transition table the number of elements in a list labelled by a cue word is .
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Figure 4 - Mean correct RT's for false items plotted by problem type and
position of false link. .



- Mean Response Time { sec)

Cue Set Size

Figure 5 - Mean correct RT's for problem type P(=)
: ' plotted by cue set gize and true/false.
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‘referred to as the cue set size; Figure 5 plots true and false RT's for P(—).
by cue set gize to illustrate set size effects analogous to those Ffound ;n
meﬁory: scanning tasks. The true and false curves are 'sepafated by a
constant, suggesfing a simpie additivé effect on RT of the process
differences between true gnd false link ve;ifications;

Errors were infrequent under the speed/accuracy instructions given
the subjects; the error rate over all conditions and subjects was 5.2
percent. Group error rates broken down by problem type and position of the
false -link are presented din Table 1. While the’ aufhors recognise thg
possibility of impértant theoretical relations between response .times and
efror rates as for example suggested by Pachella (1974) among others, a
rigorous analysis relating the two was not performed for the data presented
here, This omission is pértly justified b& the empirical observation that
while mean RT's shoﬁed a consistent pattérn across subjects, error rates did
not. Also, from purely statistical considerations when data is so finely
classified that some <classifications have twenty or fewer observations,
error rates may not be sufficiently reliable for the énalysis of data from
an individual subject whereas RT's may still be meaningful in providing

insight into psychological processes.
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Theoretical Analysis

'Suﬁpose that for a parficular ASP item we have been given-é
description of the sequence of psychological 'operations used to solve if.
The stage modeling technique to be used here assigns to each operation or

étage, 5 , of the processing a tuple of parametefs,
z
< m(8), 6(8) > .

corresponding to the theoretical mean and variaﬁce of processing time
aésociated with that stage; In cases more geﬁeral than that considered here
this tupie may Béccme a family.of tuples corrésponding to various stétes of
the cognitive-systém that could exisé when the ééége Qperates (i.e.,'étages'
are spécified conditionaliy) or ﬁupies méy contain additional parameters
such aé higher RT moments or the probability”of a processing.failure in thaf
stage. If stages S, Sz;..., Sh. are applied in sequence to process the-

item then the RT mean and variance for the item are simply,
L] ‘L ea 2
MmRT) = Z m(8;) and &@RD = T s(8;)
3= J=1

The additivity of wvariances follows from the assumption that stage
processing times are stochastically independent. Now suppose that there are
two sequences of stages that could be applied to the ltem, 8, , S, ,..., S,

S

2z 3Ty

and S,

o Smp and that these two sequences are observed with

probability p and (1-p) respectively. Let,

e

[0 X
. T T P
p1=r§)*(sil)and 5, 8 (8,5) i=1,2

i=l

Then the mean and variance of the overall RT are,




A(RT) = piMy + (1-p) M2

If

- 2 ’ 2 ’ ) 2 z
C6T®RD) = po + (1-plo, + P(I-P)( - m,)

Without going - into' further detail, similar  expressions can be derived
whenever RT is assumed to arise from the probabilistic mixture of sequences.
of stages.

Procéding on the basis of the observations made in the results
section above, é stage model was constructed using a small number of
inclusive stéges that are identifiable (i.e.,‘ i; the sense. of unique
parameter estimates) and that have direct theoretical interpretation. These

stages are;
stage stage description
Va verification of a single probe link

with cue set size of n

W verification of a doublie probe link
with cue set size of n

K . orientation, attention, perception
and miscellaneous set-up and
bookeeping processes
D decision and response processes that
differ between "true" and
"false" responses
Processes involved in the verification of single and double probe links have
been summed together in the V, and W, parameters respectively. Due to the
problem of identifying parameters it dis not possible to make definitive
interpretations of the stages K and D. The K stage includes all those

operations which are in common across problem items, such as attending to

the;CRT digplay or executing the motor components of a keypress response; in .

13




addition K may be regarded as incorporatiqg incidental ﬁrocesseé.reQuired
for the logical completeness of the model such as recording the input and
output of stage operations. Any processing differences between rtfue and
false responses, including handedness, are incorporated in the D stage. For
the experimental data false responses are slower.rthan ~comparable true

responses; the D parameters reflect this aspect of the data.

Derivation of. theoretical expressions

The derivation of expressions for theoretical RT means and variances
will be illustrated by examples since there is iInsufficient space for an
exhaustive treatment. In the following let n; be the cue set size

associated with the symbol x,.

Example 1:  x~5—X; (T)

To solve this simplest problem the subject need only verify one 1link; hence

exactly the stages V..‘.l and K occur. Then,

- (RT) mPR) + aK)

¢ (RT)

F(V,.) + 6®

Example 2:  Rp—d—¥;—5—Xo0—%g (TFT)

 Assuming that P(---)  has a strict . left/right processing order the subject

ik




first verifies that X=X is true and then finds that XXy, ds false;
the subject responds "false" as soon as she finds this link so that only

stages Vo » Vn,» K and D occur.

m(RT) M) V) ) (D)

2

¢ (RT)

S (Vn) + 6°(V,) + SE + 4D

% .
e

Example 3: x;—;—xl< (TFT)
Xy

It 1is assumed that the double probé link (<) 4is verified in a single
operation, an, and that the tail (-) is checke& before the branch (<),'so

that the stagés are V., , K and D.

e 3
L)

MED = () )+ s + (D)

- §H(RT)

SW,) + o"(wni) + S(K) + S(D)

.
Example 4: i::xxk (¥T)
. X7

3
A probabilisfic order of processing was suggested for types P(>) and P(>—):
This order will be defined by two probability parameters, Let q e the'
.probability that within a right branch (>} the upper link is checked before
the lower link, and let r be the probability that for P(S—) the branch {>)
is checked before the tail (-): In Example 4 the parameter r 1is not
involved. With probaﬁilit& q the stages are VWL ,K and D, and with

probability (1-q) the stages are V,, , th, K and D, with the result that,

15




M (RT) M)+ () MV )+ mE) + (D)

¢ (RT) SU,) + (1) 6" (V) +6 (K + oD

+ q0-9)[ (v, 0]*

"The expression for GL(RT) is that for the probability mixture of two

sequences of stages.

X.
Example 5: >ck——)-—x,. (TFT)
X:
S ..
In Example 5, with probability rgq the stages are L Vﬁj, K and D; with
L n; ? nj L3

probability r{1-q), V"‘.i » K and D; with probabilicy (1-r)q, V, , V v

K and D; and with probability (1-r)(1-q), V¥ 2 v K and D, Hence,

", . ¥
“.\

M@RT) = g V) ¥ /u(vhj) +  (1-r) (V)
+ Ky + }M(D)
ERI) = q &) + W) + (I-r) (V)

8@ + &0+ a0 pm ]

2
+ r(1-x)] m (Vn,._)]

The expression for & (RT) 4is an algebraic simplification of a general

expression.

" .
Example 6: >xi——>'—-_x,. {TTT)
: X: : .

i

Since all links are true the same stages must occur whatever the order of

processing. Consequently,

16




J(RT) = ,A(V“,\) f,u(vns) +¢A(Vnh) + (K)
S@RD) = SV, ) + g(v,ﬁ) + 6Z(an) + §(K)

These examples should convey the gist of the statistical model.
Note that for every ASP item the theoretical RT mean and a variance can be

expressed in the following canonical form,

BT) = a, (V) a, (V) g pa(Vy)
toay W)t ag (i)
+ a MK+ ay (D)

"(RT) = 2, §(V,) + a,&W,) + a, s(Vy)

+ 8,6 W) + a;&W,)

+ a, ¢ + a, &M + b

where the a,'s (i=1,...,7) can be interpreted as the average number of

. . 2, .
times the corresponding stage occurs, and b is the 'mixture variance"

. {i.e; the variance added by mixing processing strategles where strategies

may require differing amounts of time). Writing the row vectors,

< pul¥, )y (T ) s V) a0,y gD 5 a(K) , pn(D)>

5

<&, §Y,), W), $MW,), 6 (W), ), S)>

i<

i

e

<@, 8,, 85y 8y, Bg, 8,5 2y 7
the canonical forms become,

-

MART) = ae’ , - &R v +b

It

L




where ‘¢ is the transpose of ¢ and xf' the transpose of y. For #11
true items and for false items in ngups A and B, each a; is an intgger‘

and HL=0; for false items in group C the a;'s may be functions of q and
r, and b'>0 is a function of g 54 and r, Note that ASP items can be
classified according to their coefficient vectors, a ; and mixing variances,
bl; ‘under the model this classification is a full specification‘ of the
items. For the items -used in the experiment forty-six such classification

categories occurred.

Statistical Evaluation

A discussion of parameter estimation and statistical techniques is
presented in the appendix. Best estimates of parameters were obtained for
each subject.by numerical methods wusing a quadratic loss function, and the
fit of . the model to the RT data was primarily evaluated by constructing
" minimum simultaneous confidence regions containing éll the RT wmeans and
variances predicted by the model. Parameter estimates are given in Tables 2

and 3; statistics are listed in Tables 4 and 5.

Tables 2 and 3 about here

For the mean RT data the statistics in Table 4a show that while thé
Vmodel does account for a substantial percentage of the between and total
variances (PBV and PTIV colums), the maximum modulus t test applied to the
group suggests ﬁhat the model is probably not a complete account of the data
‘for. every subject in the experiment (g% for the group is .004 which is the .

probability of observing a t* value of 4.44 or greater).
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Table 2 -~ Parameter Values, Aﬁeraged Estimates

single probe (~) verification:
cue set size 1
cue set size 2.
cue set size 3
double probe (<) verification:
cue set size 2

cue set size 3

set—-up processes

true/false difference .

A

V2

V3

w2

W3

probability of up before down on (>),

probability of (>) before (=) on (>-), r

18a

M
(msec)
676
1169

1146

924
1206
446

466

0.85

.89

(msec)T

241
446

563

365

412

210

200




Table 3 ~ Parameter Values, Individual Subjects

Subject 1 Subject 2 Subject 3
M s e g A )
v1 878 566 449 3 571 0
v2 1545 676 867 293 1001 450
v3 1587 720 913 593 775 446
W2 . 968 575 789 399 748 398
w3 1144 442 986 421 768 . 284
K 475 1 545 1 394 0
D 729 1 346 489 452 0
q 0.79 1.00 0.78
r 0.88 0.48 1,00
Subject 4 Subject 5 Subject 6
s ¢ o s A ]
v1 956 0 594 259 607 532
V2 1375 671 1430 635 798 230
V3 1348 729 1271 646 980 636
W2 1156 689 1045 31 838 78
W3 1582 720 1455 485 1301 88
K 292 1 462 307 . 506 414
D 459 1 302 2 506 1
q 0.61 R 0.92 1.00
r 1,00 ©0.99 1.00
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Table 4 about here

In Table 4a two of six subjects have g% > ,10 dindicating a good fit of the
model for these individual data, and in Table 4b g% > ,10  for three
subjects. The third column of Table 4 gives the number of points lying
outside a .90 simultaneous confidence interval; any such point implies that

g* < .10 .

Table 5 about here

Table 5 presents statistics for RT vériances. Due to large sampling
variability of variance esﬁimates, the g* statistics are not very
informative since ﬁany modelé would - be acceptable within wide limits of
variability. The third column of Table.5' compares the model .to the
hypothesis that all RT variances are the same, in terms of the proportion of
points for which the model makes a more accurate pfediction. Evaluated

using this statistic the model does no better than the "same" hypothesis

although both are acceptable given the variance of estimators. Since the

averaged RT variance parameters presented in Table 2 appear to be orderly

they will be discussed although no strong conclusions should be drawm.
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Table 4 ~ Statistical Analysis for RT Means

points '
subject  t* gk outside PBV = PTV
90%
region

A. model classification (46 points)

1 444 0,000 2 79.7  42.7
2 2.78  0.182 0%  76.7 35.6
3 3.32 0.029 2 78.6 40,7
4 4.45 | 0.000 1 79.3 3.5
5 3.86  0.007 2 . 57.7_ 28.1
6 2.84  0.157 0%  68.7  27.8

group - 4.4b4 0.004 3 73.5 . 35.2

B. type X false link classification (23 points)

1 - 3.28 - 0.014 1 85.6 . 41,5
20 0 1.74 - 0,697 0% 84,3 32.1
3 2.42  0.198 0% 89.5 37.3

4 3.01 0.036 1 83.7 35.8

5 3.44 0.008 1 64.5 26.6

6 - 2,67 0.101 0% 71.0 24.5
group 3.44 0.049 2 79.8 33.0
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- Table 5 =~ Statistical Analysis for RT Variances -

(model classification, 46 points)

o . proportion
subject t#* g% model
: Vs

"game"

1 0.83 0.99¢ 0.478
2 0.63 0.99¢9 0.500
3 1.00 0.999 0.348

4 1.07 0.999 0.522

5 0.85 ¢.9299 0.478

6 0.56 0.999 0.391
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Discussion

of . .
Stage modeling has been conceived/in terms of a formal processing

language description of memory operations: stages are analogous to
procedures or subroutines, perhaps' probabilistic in their execution,
organised by call sequences inte memory processes., Within such a stage
modeling framework various levels-of detailed description are possible. For
example, one mighf consider Wacrge gstages such as "perception”, "memory" and
"response", or comparatively micro stages such a; "input the symbol in
position p of the stimulus array” or "compare the code for symbol X with the
céde for symbol Y". Wo particulaf level of detail can be rega?ded as
preferred: theoretical descriptions in stage terms must be - e§aluated with
respect to the relevant data. waever, the stage modeling framework does in
princifle relate all levels of description in terms of the nesting of
procedures in call sequences, thus providing the possibility of consistently
treating the results of simple and relatively more complex laboratory tasks
with the same‘overall processing model (Atkinson & Wescourt, in press).

| A stage model can be most productively regarded as a rational basis
for the construction of statistical models. Each statistical model stemming
from a stage model can be evaluated with respect to the data, successes and
failﬁres yielding new information about the data possibly not apparent on
inspection or avallable from other amalyses. In general it is not necessarﬁ
‘that every statistical model derived from a particular processing language
- description be "successful", but only that some are and that these provide a
ugeful characterisation of the data. Of course, if a stage model wefe taken

as a literal model of a specific real time process, say specific
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interactions among brain centers and layers 6f brain tissue, it_ would be
important to verify all the statistical models derived from the stages
theéry, However, for the analysis of cognitive performaﬁéé the aﬁthors
regard stage models as non-literal informafion_processing ‘descriptions from
which statistical analyses are derived that provoke a deeper and more
adequate characterization of patterns present in the data.

. The statistical models for RT means and variances developed above
may be regﬁrded as an intermediate 1evé1 of stages analysis appropriate to
the level of observable data: it does not expliéitly déséribé eitﬁer the
component processes of individual link verifications or the overali control
structure in which the problem solving algcrithms are embedded. 7$;ncé‘these
additional levels of analysis are of theoretical interést, the discussion
will turn to bridging thesé'coﬁCeptual gaﬁs. The following stages apalysis

of single and double probe‘iiﬁk verification is given;




‘L, determine whether single or double
probe (s or d) .

Ly inpu;_cue
L, access memory list associated with cue
Ly input probe 1; if d then input probe 2

L, reset match register 1; if d then reset
register 2 o :

Ls unpack an element from the memory list
L, match the element against probe 1 and
.increment match register 1 by the value
"of the "goodness-of-match'’;
if d then match against probe 2 and
increment register 2

Ly if the entire list has been'unpacked then
continue_elsqzreturn to Lg

Ly 1if @ then add match register 2 to register 1

e if s then if the value of match register 1

exceeds a criterion cg then return true

else return false;

if d then if the value exceeds c4 return

true elge return false
Note that the analysis is essentially an "exhaustive scan" model, where
matching is - not necessarily all~or-none, and where the representation of
. lists in memory and the co-ordinate retrieval or unpacking process may be
more involved than reading from a list of symbols at a uniform rate.
Representing a list as a cluster of symbols bound to a memory node by
associative 1inkages and defining retrleval processes in terms of this
representation would be one way of conceiving of an unpacking operation with
more complex characteristics, although such "built in" characteristics may

have limited conceptual and theoretical interest.

The claim is that this model of link verification 1s consistent with
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the stage parameter estimates in Table 2; for the sake of simplicity only
the average values of parameter estimates are discussed, The parameter

values in Table 2 may be qualitatively summarised as follows;

V) < (W) = pa(Vy)
)“"(W-;_) < }U\(w3)
ML) < pm(T)

() = palVy)

&V,) < &(Y,) < «TV)

S (W)

A

S,

) < s (V)

&W,) < &Wy)

This summary can be regarded as an hy'pothésis that, within the sampling
variability of the parameter estimates, 1s not disconfirmed. A problematic
asééct of‘ this summatry is that ,\A(W.L) < (V) by 245 milliseconds, vet
(W) = f“‘(vs)' This result may be attributable in some way to the féct
that; foz_' W, the number of probes is the same as the cue set size, but in the
abaence of additional controls no ad hoc explanationé are .offere.d.
| If it is assumed that.stages L,s Lg and L, account for the major
lpart of ‘1inkl verification time, them a gross simililarity would be predicted
between single and double plrobe links. With  suitably complei
-'representatidns of lists the mean unpacking time for I1ists of lengths 2 and
3 may be co;npérable, yieiding ,.u(Vl) = ;L(Vz); the speed of V, couid be
_exﬁlained by thc_: simplicity of the representation for a list with a single

. symbol requiring fewer unpacking manipulations.

o
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- Single and double probe link verifications differ in étages Lg and

Lg. If the matching process is 'probabiiistic (e.g.,.'due té variable

imﬁerfect coding of symbols) then the final matcﬁ valué in fegiétef‘l will

he digtributed differently for single and double probes (e.g., double probes

will have greater mean and variance for both true an& false 1links). This

together with the two criteria, ¢g and ¢, might account for decision

component differences in ways similar to signal‘detection models that relate

| RT to criteria placements in relation to signal and noise distributions

(Thomas, 1971). The observed :5"(W7_) < o?'(Vz_) ard :57'(W3) < cz(Vg) are
interpreted as dqe to such differential effects in stage L,.

The value (D) = 466 is greater than would be expected on thée basis
cf handedness alone, suggesting genuine decision component differences;
again this is interpreted as a stage L, effect. Since successive link
verificatioﬁs are required by some ASP items, in order to achieve an
..accept‘able error rate (subjects were insfructed to be accurate) it is
necessary to make a more  accurate decision for each intermediate
_ verification.than would be needed if only a single link were vefified on
leach trial. Also since over all items there are more true thaﬁ false links,
.étage L might ﬁe "tuned# for a true verification. The demand for increased
~ accuracy together with a true verficatién éxpectancy could account for the
Obsérved value of pa(D). ‘'The apparent constancy of AA(D) over f:roblem-
types, even fhose where only one link 1is verified, is consistent with the
theoretical conception that the same link verification mechanisms are useé
for all problems without modification according to problem type. From these
congiderations 1t would be predicted that eﬁcouraging speed over aecuracy,
using only 'singie 1ink problems, reducing the variety of ASP items used
~within a single experiment, or uéing multi-link items with more than one

false 1link would 211 have an effect in reducing the value of );(D).
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. As an aside, it may be possible to use an empirical speed/accuracy
tradeoff to further imnvestigate the verification mechanisms found in the ASP
task. A direct implication of the theory discussed above is that unde¥
speéd instructions each link verificarion will be less . accurate  as
proceésing is modified for speed or cut short, with the results that-efrors
will tend to Increase relatively more.for items with many liﬁks compared to
those with few, and that error RT's for multi-link true itgms will decrease
relative to correct RT's while error RT's for multi-link false items will
increase. Other quite different effects of speed inétrﬁctions might be to
induce subjects to implement faster problem. solvihg algorithms, say with
some sort of simultaneous verification of links, to "prime" access to
certain algorithms and retrieval mechanisms in anticipation ofr the next
problem, or to adopt sophisticated guessiﬁg strategies. The issues with
regard to speed/accuracy effects in ASP problem solving are manifold and:may
perhaps be ﬁost productively approached by comparing results across
experiments to determine what effects might be present.

In stage terms a stable strategy is a problem solving algorithm that
is not modified with use. Empirically, stable strategies would ‘be expected
for practiced subjects who have in some sense developed optimal task
techniques, with the required amount of practice depending on the particular
task. The present expériment was designed to ohserve only aéymptotic
performance,'making it in principle possible to specify a single szet of
algorithms or strategies governing the pfocessing of ASP items. VA,theory as
to how ~these strategies are set up with practice is not developed here;
howéver, the authors do. conceptualise an interactive feedback system where.
the étate space of the system consists of algorithms and the effects of

-econtrol dinputs are to rebuild -algorithms. It is proposed that for tasks




'Qhere ‘ altexnétive processing strategies are a - genuine theoretical
possibility, it may be more appropriate to analyse data from,triais early in
the'experiment in terms of a mixture of strateéies rather - than a‘singlé
stable strategy. For the sake of completeness of theoretical conception 1t
is aséumed that the strategies for the various problem types are called‘by-a
controlling stage that on each triai idéﬁtifies the probiem type. on the
- 'basis  of dits mapping diagram configuration and calls the correspoﬁding
problem solving a}gorithm.

Additional empirical work is required to evaluate these conceptual
analyses of control and componeﬁt processes, For example, one line of
experimenfatibn .would be to more thoroughly examine ASP wverification
problems, with manipulations of the transition table and probiem types.
Apother line would be to examine ASP problems wmore ‘complex than
' ferification, with the idea that such tasks could reveal more about the
construction of strategies, that iIis about how compcnent processes are used
to build problem solving algorithms. Alternatively the verification of
isoiated single and double probe links could be "examined iIn greater
experimental detail. All these levels of experimental investigation are
well integrated within the stage modeling framework, which is, again to
emphasise, one of the wmain theoretical motivations for wusing such a
framework as a basis for data analysis.

From a theoretical standpoint a close relationship exists between
link verification and some memory-scanning tasks. In both cases a proba
item must in some sense be’ compared against a list of symbals in memory to
determine if the probe is a member of the list. A point of interest is :
whether memory-scanning mechanisms that have been investigated in the

~ laboratory can be identified as components of relatively more complex tasks




such as solving ASP verification problems. The model constructed for the
ASP problems investigated in this paper can be regarded as an attempt to
tackle this issue. About the simplesf relation that could obtain between
memory scanning and ASP problem solving would ,ﬁe that the' scanning
mechanisms engaged by stategies to yigld intermediate fesults have the same
characteristics as those observed with simple memory scanning tasks. Yet
this need not be so. It is conceivable that as strategies for the more
complex stbrage, retrieval and decision making required by ASP problems are
constructed in the memory system (Atkinson & Wescourt, 1975) new demands
for rapid access to a larger volume of stored information, for the-recording

of intermediate results which direct further processing, and for controlling

error rates when intermediate results are combined or cascade in a final

:decision, demand scanning meéhanisms having different characteristics. The

data from the present experiment are not in themselves conclusive, but the

parémeter values of Table 2 as discussed above suggest that the inferred

scanning (link verification) mechanisms and decision processes yield

values of RT parameters that differ from those typicall} found in the memory
scanning literature. There is the unexpected result that verifying a double
probe_link is as fast as verifying a single probe 1ink;'the fact that for
single probe links verification times for cue set sizes two and three do not
differ from each other but are dramatically different from the verification
time for cue set size one; and the unusuaily large constant difference
betweenrtrue and false RT's. Each of these effects is of course subject to
further investigation and taken one at a time are not without some parallel
in the memory literature, but the authors believe that they provoke an

examination of the issue of how memory sScanning mechanisms relate to the

- larger human memory system. It is falr to say that proportionally more




effort has been devoted to unravelling: the -effects.' of experimental '
manipulations on basic memory scanning tasks and constructing sophisticated
and interesting models for these data (e.g. Theios, 1972; Anderson, 1975;
Shevell & Atkinson, 1974), than has been devoted to examining the possible
roleé of memory  scanning mechanisms in human memory systems thaf are
sufficient to support more involved c&gnitive processing.
The stage model developed for the experiment described here
..characterised. each stage by two parameters, the mean and variance of
processing time; as remarked above this type of model can be genefalised te
include more parameters such as the probability of an error in that stage or
higher moments 6f the processing time distribution. Withoﬁt thanging the
nature of the modeling technique, stage parameters could belexpressed
conditionally on the state of processing, as for example on the input to the
stage from previously operating stages. Even with these generalisations
parametar esfimation and statistical procedures can be derived in a
mathematically simple way. Granted that it is one opinion, the authors feel
théf statistical methods such as those described in this paper that are
based on a formal but flexible model of psychological processing should in
many cases be both practical and more incisive than the standard linear
statistical analyses often found in the memory and problem solving

literature.




Comparison with Hayes' spy problems

Hayes (1965, 1966) has reported studies using a problem sélving task
similar to that of the ASP problems defined here. Subjects in Hayes'
experiments learned a list of "spy" names together with rules about which
spies could talk to each other; the list of these “talking connexions" may
be regarded as a transition table, In the basic experiment, subjects were
given two spy names and required to = find a chain' of spy-to-spy
communications conveying a message from the one spy &o the other. Subjects
were instructed to "think aloud" and their protocols were analysed with
fespect.to the overall time taken to solve a problem, the rate ét which
links in the communication chain were generated, and diversions into "blind
alley" side chains (i.e., passing the message to a spy who did not have the
connekions to get it to the goal spy). Subjects were able to solve spy
problems in a matter of a few minutes, occasionally entering side chains and
usually achieving a solution chain longer than the minimal required chain;
the reader is referred to the original papers for Hayes' analysis -of his
results. In terms of the type of theory proposed here for ASP problems, the
solution of spy problems would be described by algorithms comstructed using
a small set .of basic psychological operations and following specifiec search-
~and-test methods of chain construction. Insofar as the model stated
definite algorithms it would have the potential to account for protocols; as
stage models the algorithms would also make gquantitative predictions about
the pattern of observed RT's and -error rates. Of course . the particular
theory of ASP problem solving outlined -in this paper is not sufficient in

itself .to account for Hayes's results such as the end-acceleration
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- phenomenon: in addition explicit algorithms would have to be constructed and
demonstrated by computer simulation or by inferential data analysis to

prdduce the observed pattern of results.

The stage modeling technique

it islwor;hwhile to emphasise the positive aspects of stage modeling
as a technique for the analysis of RT tasks. Interesting arguments related
-to those presgnted here have been given by Sternberg (Sternberg, 1969b) with
respect to the sﬁ—called additive factors method. First as has been noted,
considering psychological processes as procedures or subroutines in the
sense of a farmal computer language provides an easily conceived unifying
framework for theoretical analysis and a rationale for investigating memory
mechanisms as they occur both in simple and complex laboratory tasks.
Second,'from-a_statisifical standpoint regression models for RT moments can
be aefived from a stages theory in a relatively simple manner, basically by
counting the occurrences of stages. The parameters in éhe regression model
have direct psychological interpretation in terms of real processing'time,
and the parameters can be estimated by common analytic or numerical methods
irrespectivé of the number of classification categories or the number of
observations in each category. With TYegard te predictive power, stage
modéls can provide accounts for ‘RT moments of all orders and together with
‘notions of processing variability defined at specific stages can at the same
time . provide an account of errors. & Even though the technique dis
mathematically simple, the underlying process representation is that of a.

. quite general sequence of random variables (or random vectors) corresponding




to the definition of a discrete stochastic process (viz. a family of random

variables with a countable index set) with very few restrictions (e.g. most
of the random variables cac be assuﬁed to be finite valued)}. This suggests
that many models of memory processes will be at least formally "nearly"
equivalent to some stage model as defined here. The nature of this
equivalence can be formalised 1in terms of the partitioning of the event
space of the experiment (i.e. the set of all possible data points) induced
by the'inﬁérse mapping of the goodness of fit measﬁre'regarded as a random

variable. -

Simple and complex tasks

The algebra step problems  introduced in this paper are, like other
artificial memory and problem solving tasks, not advocated for their
intrimnsic inferest but rather as one experimental paradigm for testing our
undérstanding of human memory systems. Fast accurate problem solving has on
the one hand clear theoretical relations to conceptions of basic memory
mechanisms and the mammer in which these mechanisms come to play in a larger
memory system, and on the other hand it is a bridge to the chronometic
analysis of more txaditional problem solving tasks. While the investigation
of simple .tasks is indispemsible it is surely necessary to develop
theoretical constructions for more complex tasks with equal vigor: the
chronometric analysis of tasks at the level of ASP problems 1s intended as
one -step in this directiom. In philosophical perspective there is no
assurance that even a detailed understanding of the models required t&

account for isolated simple memory tasks will automatically Iead to an




adequate conception of human memory systems that are capable of supporting

such routine cognitive functions as the retrieval of propositiongl
.information {Anderson & Bowér, 1973) or grade school arithmetic problems
{Suppes, Loftus & Jerman, 1969}, The data and analysis presented in this
_paper suggest fhat analysis of RT's on the_order of five seconds 1s feasible
without undue loss of precision either in the conceptuél nodel or the
statistical treatment. Across experiments it should be pbssible to identify
thg characteristics of memory mechanisms as they occur in memory. systems
where procesées involving alternative strategies, 'intérmediate processing
results and decisions about subsequent processing, and rapid access to large
amounts of stored information are operating. Such a program of research has
the potential to develop the basis for more exacting analyses of problem
solﬁing tasks in terms of an explicit theory of human memory, to elucidate
the role of control and decision processes, and to qualify our understanding

of memory mechanisms discovered through research on simple.tasks.

32




Statistical Appendix

The coefficient vectors a.= <@ ,...,a;> define a classification of
observations into distinct categories under the model; fbrty—six'such

clagsification categories were observed in the experiment (i.e., there were

46 distinct a vectors). The notation below will be used in what follows,

2
~

The index "i" refers to the i*™ subject and "j" to the j™ classification

category.
n - number of classification categories
under the model

- number of subjects

NLj number of observations .
My RT sample mean

M., RT grand sample mean
2
Sy, RT sample variance:

> '-1 ) . . of 2
Ty, - sample variance o -5y

{see methods in, Kendall & Stuart, 1969}

Parameter estimation

fhe approécﬁ t;keﬁ. to ﬁarameter estimation was to=§ho§sé -a ;255
: fﬁnctién coﬁceived.of as é functioﬁ of the parémetefs given thé”daté; and to
~ find parameter vﬁlﬁeé that .minimised fhis‘funcfibn. Since functioﬁ %inima
wefe found ﬁsing a nﬁmerical grid.searcﬁ.methéd, éoﬁputationélly effiﬁient
1.§ﬁadratic (least squarés). loss fuﬁétions were chosen. .Paréméfers were

estimated for each subject individually.
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* The actual estimation proceded ' in'two steps. First values of s

q; and r; were determined using the loss function,

’ T
' - no (M- oggei )
1S, (g as m) = 2 Ny ==

i

Second the parameter values, E& s al s Y , were treated as constant and Y.
S = e _

estimated with the loss functienm,

L) o) -
" ( Eil gL Qs r;) = :E:

o [5y - (i
=1 T

3

An alternative procedure would have been to  simultaneocusly  estimate all

parameters using a combined loss function of the form,
Ls = wis, + (1-w ) s, , 0<w< 1

However, it was observed that the RT means showed a clearer pattern than the
RT variances, so that estimates of the mean RT parameters "uncontaminated"
by possible failures of the model for RT variances were considered
appropriate.

Parameter estimates for dindividual subjects are listed 1in Table 3.

The numerical method used to estimate variance parameters excluded negative

varlances with one result that some parameters were estimatéd to be near
zero (the loss function, LS, , would bhave beén reduced had negative values

been éccepfed for these parameters). Aﬁ.inherent problem in the analysis of
RT variancés is that fﬁr.classificatioﬁ‘categories with small‘ sample sizes:

' z ' C .
the variability of the sample wvariance, 5., , is large relative to that for

v

the sample mean, ML;‘ congequently parameter estimates will alsc have large
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variability. Note that variance parameter estimates averaged across
subjects are more readily interpretable as variability is reduced through

averaging.

Goodness of fit measures

Consider the statistic .defined for the i* subject and jﬂf category

by,

. ( M'L' - a.---’e"-T )
= 3 L) 3L
£, = N = : =

.3
Si;

-which for suitable models may be assumed to be approximately distributed as

Student's t under the hypothesis that the theoretical mean, g-.gT is the

s ?
true mean of the i3™ RT distribution. One method of evaluating the fit of
the? model fo mean RT's is to construct the smallest possible uniform
simultaneous confidence region containing all the ti;'s and- to note the
probability of the complement of the region., This probability is the
minimum value of o (the probability of .a type I error} for which the
hypothesis.that the model is true can be rejected; small values indicate
that the model is probably not a full account of the mean RT data, 1f the

“distribution of t;, is approximated by N(0,71) instead of by Student's ¢, a

conservative bias is introduced in the sense that the value of « is

necessarily reduced. Since the normal approximation simplifies the

calculation of a simultaneous confidence region this.assumption is adopted,
For the i™ subject define,

t* = t..
; gax eyl
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If the'til's were independent then for any positive number, c,

1-—Pr{ti: < c}

Pr{t{c > c}
"

1—'TT Pr{»c<t-‘:‘ <C}
1=

1-~[Pr{-c<'z<c}]rL

where z~N(0,1). This is the probability that for a fixed i all the £L3'3
“are contained within a uniform, symmetric confidence band of width 2c. But
for each 1 the t;; 's are correlated through the estimafion procedure, and
‘with enough parameters it may be :possible to obtain all the tyy = 0,
rendering the preceding probability statements. meaningless. Accordingly
some conservative adjustment should be made taking into account at least the
1numbé; qf free pérameters, p. The choice for the present analysis was to
fake,r

' ' tn-p)
g?: 1 - [Pr{»c< z < c}]

in place of Pr{t¥ > c{ above. If tk=c is observed then g% is a
i i L

‘statistical measure of the fit of the model for the i™ ~subject. Similarly

for a sample of s subjects define,

t = max | eF | = max | gyl
1&i&s - LI :
12 1en
then,
. sin-p)
g* = T - [Pr{—0<2<c}] .

-is a goodness of fit measure for the sample as a whole. This procedure is a

type of multiple modulus test (Miller, 1966) referred to here as a "maximum




modulus  t test" with (n-p) or s(n-p) '"degrees of freedom", taking some
licence with terminology.
A related procedure can be followed in evaluating theoretical versus

observed RT variances. The statisties defined by,

can bé treated in the same manner as the t; 's above although EES cannot be
regarded as héving Student's t distribution and g* in this case ought to be
taken as a tfansformation of the t&l'S'reflecting goodness of fit rather
than -as an approximation to a true probability._

To obtain a firmer statement about goodness of fit a second measure
was sought. Although the model under consideration is not linear, the total
sum of squares can be partitioned in such a way as to yield statistics
reflecting the goodness of fit of the model to RT means in a way similar to
the pércentage of between variance accounted for and the sample correlation
coefficient in linear regression. Define for any set of -theoretical means,

{fijif for the i™ subject,

z

)

L 3

’ n oo
MV. =  SS(between) - }i thc flj - M.
: - : RT3 :

.
“Z.IZ Nlj(fi.j- - Ma,‘,) (fu - M) [
i=

[}

'
MV, = max { MV, O }
/
: S MV,
PBV, = (6] ¢ S —
SS (between)

37




!
MV

L

PIV, = 100 ————m—-
SS(total)
If the fﬂ 's were determined under a linear regression model then,
! -
MV, = MV{ = S5S(linear regression)

The results of the maximum modulus t, PBV and PTV analyses for RT
means afe presenfed in Table 4. Table 4a gives these-statiétics for the
classification categories determined by the 2 vectors . of the model;
Table 4b represents the same analysis applied to the classificatioﬁ of

Table 1 (problem type X position of falge link), From Table 4a it is clear
.ﬁﬁhat'the model accounts for a fair proportion of the variance (average PRV
ié'73.5 and average PTV is 35.2), yet only two subjects have g% > ,10 which
is a "reasonable" criterion for a good fit. Additional information about
the maximum médulus t test is given by the number of points falling outside
the .90 confidence region; g* > .10 if and only if this number is zero. it
‘should be noted that points which lie outside the confidence region are not
: neceséarily those which the model fails to account for since when éarameters
are estimated simultaneously for all points an “exceptional” point can
adversely influence the prediction for other 'normal™ points. For the group
'.of six subjects the maximum modulus t test indicates that the model 1is true
can be rejected for & = .004. It should be noted that one bad data point
for a single subject can be sufficient to reject the model for the grﬁup
using the maximum modulus t test; the proportion of subjects for which the
model is mnot rejected is perhaps a more appropriate group statistic. In

view of the all too common practice in the literature of presenting
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statistics for averaged group data it is difficult to make a firm statement
ont this point based on the results of other comparable analyses.

The analysis presented in Table 4b indicates a slightly better fit
althqugh it is derived from a less strict interpretation of the model. Scme
improvement 1is expected since more extensive averaging may cancel out
effects not accounted for by the model and estimated error variance is
increased slightly as observations with different means are - pooled.
However, this second c¢lassification does correspond to an intuiltively
natural division of the data.

Table 5 presents an evaluation of the model's success in accounting
for RT variances. As remarked above the varlance of SZ is large for small
sample sizes: for the experimental data this renders the maximum modulus t

=

test uninteresting because for individual subjects the T;;

's are too large

to reject any set . of ballpark estimates for the variances. Variance

predictions under the model were compared to the the hypothesis that all the

S;'s are the same, using the proportion of points better accounted for by
the model (absolute differences between predicted and observed were
compared). Referring to Table 5, the model succeeds about as well as the
"same" hypothesis for four subjects and does worse for the remaining two
subjects’ data. This is not strong support for the model applied to RT
variances but may be interpreted to mean that, compared to the "same"
hypothesis, attempting to infer stage variances did not cost much in the way
of goodness of fit, while at the same time the model's predictions cannot be

N
rejected given the variability of the S;; estimates.
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